
Technical Report Template &
Guidance

for Submission to the

Chair of Financial Economics & Risk Management

Student Name (ID: 123456)

July 31, 2025

LaTeX Template Recommendation & KIT Presentation Guidelines
For consistency with KIT formatting standards, we recommend using the official KSP
LATEX class file (ksp.cls) and the SDQ PowerPoint template for final presentations.

More details can be found at:
https://www.bibliothek.kit.edu/ksp-toolbox-dokumentvorlagen.php

https://sdq.kastel.kit.edu/wiki/Dokumentvorlagen

Contents
1 Introduction 2

2 Mathematical Formulation (replace with your own) 2

3 Use-Case Scenario (replace with your own) 2

4 System Architecture (replace with your own) 2

5 Unified Layered Model (ULM) (replace with your own) 3

6 Algorithm Specification & Pseudocode 3
6.1 Plain-Language Overview . 3
6.2 Pseudocode (replace with your own) . 3
6.3 Reference Implementation . 4
6.4 Complexity Analysis . 4
6.5 Executable Example . 4

7 Experimental Setup 4
7.1 Hyper-Parameter Search Protocol (replace with your own) 5

https://www.bibliothek.kit.edu/ksp-toolbox-dokumentvorlagen.php
https://sdq.kastel.kit.edu/wiki/Dokumentvorlagen

8 Results & Visualisation 6
8.1 Formatting Conventions . 6

9 Evaluation Metrics 6
9.1 Regression Metrics . 6

10 Discussion 6

11 Reproducibility Checklist 7

12 Conclusion 7

A Code Appendix 7

B Unit Tests 8

C Authorship Contribution Matrix 11

2

Report Title Placeholder
Machine Learning in Finance

BSc / MSc / PhD Programme

Author: Student Name
Matriculation No.: 123456

Submission: 2025-07-31
Supervisor: Name

Course / Module: Name / Code

Git Repository: https://github.com/username/project

https://github.com/username/project

Abstract

A concise summary of the problem, technical approach, key quantitative results,
and main conclusions. Avoid undefined acronyms; write for a technically literate
but non-expert reader.

1

1 Introduction
1. Problem Statement & Motivation

2. Objectives

3. Background & Related Work

4. Contributions

2 Mathematical Formulation (replace with your own)
Present the governing equations of your method. Each equation must be numbered,
and every symbol must be introduced immediately after the equation. Use a short
description list as shown in the loss equation.

L(θ) = −
N∑

i=1

[
yi log ŷi + (1− yi) log(1− ŷi)

]
(1)

L Binary cross-entropy loss.

θ Trainable model parameters.

N Number of training samples.

yi True label of sample i.

ŷi Predicted probability for sample i.

3 Use-Case Scenario (replace with your own)
Briefly describe the application context, business motivation and the key performance
indicators (KPIs).

Figure 1: Illustrative use-case diagram.

4 System Architecture (replace with your own)
Provide a top-level architecture highlighting data sources, processing layers, and deploy-
ment targets.

2

Figure 2: High-level system architecture.

5 Unified Layered Model (ULM) (replace with your
own)

If applicable, map the system into Data Layer, Model Layer, and Service Layer.

Figure 3: Unified Layered Model.

6 Algorithm Specification & Pseudocode

6.1 Plain-Language Overview
Summarize the core idea of the algorithm and outline why it is suitable for the stated
problem.

6.2 Pseudocode (replace with your own)
Provide your algorithm in readable pseudocode form using the ‘algorithm2e‘ environment.
Every variable must be defined in-line or in a short caption, and the algorithm should be
referenced in the text as an algorithm.

3

Algorithm 1: Mini-batch Gradient Descent (example)
Input: Initial parameters θ(0), learning rate η, batch size B, dataset D
Output: Optimised parameters θ(∗)

for t← 0 to T − 1 do
Sample mini-batch B ⊂ D of size B;
Compute gradient g ← ∇θL(θ(t);B);
Update parameters θ(t+1) ← θ(t) − ηg;

return θ(T)

6.3 Reference Implementation
Link to the corresponding function in your codebase (e.g., src/optim/gradient.py).

6.4 Complexity Analysis
Time complexity O(T); memory complexity O(S).

6.5 Executable Example
If helpful, you may additionally include a short code snippet illustrating the API usage.
For instance:

Listing 1: Training loop snippet
for episode in range(num_episodes):

state = env.reset ()
while True:

action = policy (state)
next_state , reward , done , _ = env.step(action)
update_policy (state , action , reward , next_state)
state = next_state
if done:

break

7 Experimental Setup
This section outlines the datasets used, preprocessing steps, training environment, and
hyper-parameter search strategy. All elements are tracked and versioned to ensure full
reproducibility.
Key configuration and dependency files include:

• environment.yml – Specifies the exact Python version and required libraries (including
non-Python dependencies) using a Conda environment.

• requirements.txt – Lists all Python packages needed to recreate the environment
with pip.

• README.md – Provides project documentation, setup instructions, and usage examples.

4

7.1 Hyper-Parameter Search Protocol (replace with your own)
Search protocol. To explore model capacity while guarding against over-fitting, we
perform a <search-type> hyper-parameter optimisation using <library/tool> under
a fixed random seed (<seed-value>).1 All trial configurations, objective scores, and
diagnostic metrics are logged to <experiment-tracking platform> to guarantee full
reproducibility and auditability. Each optimisation run is capped at <N> trials, with
<early-stopping rule> applied to terminate unproductive searches.

Table 1: Hyper-parameter search space and initial values (replace italics with your own settings).

Hyper-parameter Symbol Search space Strategy Init. value
Learning rate η [10−5, 10−1] (log-uniform) <strategy> η0

Batch size B {32, 64, 128, 256} <strategy> B0

Weight decay λ [0, 10−2] (linear) <strategy> λ0

Drop-out rate p [0.0, 0.5] (uniform) <strategy> p0

Hidden units h {64, 128, 256, 512} <strategy> h0

Random seeds for each trial are drawn from the project-wide set {42, 1337, 2025} to
maintain consistent initialisation while still sampling multiple configurations.

Early-stopping criterion. Optimisation terminates when <k> consecutive validation
checkpoints fail to improve the primary objective by at least <tolerance>.

Data Cleaning and Feature Preprocessing. We apply the following deterministic
preprocessing steps after data ingestion. These are implemented as a tracked pandas
pipeline to ensure full reproducibility:

• Missing-target removal – Discard records without a prediction target (n = 184).

• Winsorization – Clip numeric features to the 0.5th and 99.5th percentiles to mitigate
outliers.

• Rare-category grouping – Collapse categorical levels with <0.1% frequency into a
common “other” label.

• Standardization – Scale numerical features to zero mean and unit variance, using
statistics computed on the training set only.

Dataset
100%

(50,000)

Train
70%

(35,000)

Val
15%

(7,500)

Test
15%

(7,500)

Figure 4: Dataset split into training, validation, and test sets.

1Replace with the actual seed or strategy you used— e.g. seed=42.

5

8 Results & Visualisation
Present quantitative results (tables) and qualitative results (plots).

8.1 Formatting Conventions
• Caption figures as Figure X.Y and tables as Table X.Y, where X is the current

section number and Y is the item’s sequence within that section.

• Always reference visuals with \autoref{} — e.g., “As shown in Figure 2, . . . ”.

For additional guidelines, see https://www.bibliothek.kit.edu/downloads/KSP/KSP-Latex-Tipps.
pdf.

9 Evaluation Metrics
Authors must include the evaluation metric(s) that best fit their specific project. The table
and formulas below are provided solely as illustrative examples. We bring the following
part as an example.

9.1 Regression Metrics

Table 2: Common regression metrics.

Metric Formula Range Interpretation
MSE mse [0,∞) Lower is better
RMSE rmse [0,∞) Lower is better
MAE made [0,∞) Lower is better
R2 r2 (−∞, 1] Closer to 1 better
Adj. R2 adjr2 (−∞, 1] Penalises extra variables

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (2)

RMSE =
√

MSE (3)

MAE = 1
n

n∑
i=1
|yi − ŷi| (4)

R2 = 1−
∑(yi − ŷi)2∑(yi − ȳ)2 (5)

R2
adj = 1− (1−R2) n− 1

n− p− 1 (6)

10 Discussion
Interpret the results, discuss potential biases and threats to validity, and outline avenues
for future work.

6

https://www.bibliothek.kit.edu/downloads/KSP/KSP-Latex-Tipps.pdf
https://www.bibliothek.kit.edu/downloads/KSP/KSP-Latex-Tipps.pdf

11 Reproducibility Checklist
• Code and data publicly available (preferably under an open-source licence).

• Exact library versions and random seeds reported.

• Script to reproduce main results within ~10 %.

• Docker/Conda environment builds and passes all tests.

• Exact environment snapshot provided in environment.yml and requirements.txt;
see env/ folder for full pip freeze. Files are duplicated verbatim in Code Appendix A
so the PDF is self-contained.

A raw text version of the dependency list is available at alg_code/env/requirements.txt.2

12 Conclusion
Summarize key findings, contributions, and impacts. Keep it short (1 page).

References – Formatting Note
Citations follow the author–year style using the biblatex package with the ‘authoryear‘
option:

\usepackage[style=authoryear]{biblatex}

For direct quotes, please include page numbers and avoid using \cite{} without them.
For further guidance, refer to the official documentation at: https://www.overleaf.

com/learn/latex/Biblatex_bibliography_styles

References

A Code Appendix
This section shows exactly **what** is in the submission repository, **how** it implements
Algorithm1 step-for-step, and **how** you can rerun it on a standard workstation (CPU
or singleGPU).

Repository Contents

The repository contains the following main components:

• alg_main.py: Canonical, line-for-line implementation of Algorithm 1.

• alg_utils.py: Reusable utilities for sampling, logging, and I/O; each function is
cross-referenced to its pseudocode line (e.g., Alg. 1, L9).

2Replace the URL with the actual repository link before submission.

7

https://github.com/your_repo/alg_code/env/requirements.txt
https://www.overleaf.com/learn/latex/Biblatex_bibliography_styles
https://www.overleaf.com/learn/latex/Biblatex_bibliography_styles

• configs/: Version-controlled YAML files that specify every hyperparameter and
random seed used in the Section 4.2 experiments.

• notebooks/: Jupyter notebooks for exploratory data analysis and figure generation
(read-only with respect to the main results).

• tests/: Lightweight fixtures and pytest scripts that comprise the unit-test suite
(see Appendix B).

• env/: Frozen dependency snapshots: environment.yml, requirements.txt, and
the full pip freeze log; included here for a self-contained PDF record.

The following guarantees apply to all released code:

• 1:1 implementation guarantee: All code uses the exact same symbols, variable
names, and step order as Algorithm 1—no deviations.

• No hidden tricks: There are no extra heuristics, undocumented hyperparameters,
or post-processing steps beyond what’s described in the paper.

• Version tag: The commit that produced Table 2 is tagged v1.0-submission.

Reproducibility instructions
Tested on Python3.11 with CUDA12.3:

git clone https://github.com/<your-org>/<repo>.git
cd <repo>
python -m venv .venv && source .venv/bin/activate
pip install -r requirements.txt
python alg_main.py --config configs/baseline.yaml

You should reproduce the §4.2 metrics within ±0.1%.

B Unit Tests
Unit tests act as a safety net: they run in seconds, catch bugs early, and ensure the code
continues to match Algorithm 1 after any change.
To run the tests, use the following command:

• pytest -q (required for Python code)

Each test performs the following:

1. Loads a small, representative dataset (approximately 1MB) designed to exercise
every code branch in under 3 seconds.

2. Runs the full module end-to-end.

3. Asserts that key outputs—metrics, tensor shapes, and data types—match pre-
computed reference values.

8

Category Purpose (for newcomers)

Fixture dataset A minimal dataset to ensure all code paths run quickly
(<3s).

Smoke test Verifies each CLI command executes without errors and
writes output.

Deterministic Checks that final loss/metric matches the saved result within
10−6.

Shape/type Confirms tensors have the expected dimensions (e.g.
B×C×H×W) and dtypes.

Gradient Performs a finite-difference check on ∇θL in
alg_utils.backward_pass.

Table 3: Overview of the unit-test suite.

Test categories

CI pass criteria
• **All tests green.** Any non-zero exit code from pytest (or ctest) fails the build.

• **Coverage 90%.** We track line coverage with pytest –cov; if it drops below 90%,
the CI blocks merging until additional tests are added.

With this setup, even first-year undergraduates can make changes, rerun pytest, and
immediately see whether any functionality broke—no deep ML expertise needed.

Unit tests act as a safety net: they run in seconds, catch bugs early, and ensure the
code continues to match the equations above after any change.

This appendix shows how to run a simple ordinary least squares (OLS) regression on
a mini financial dataset and how to wrap the code with a fast, pedagogical unit-test suite.
Copy these files into an Overleaf project (or clone the repository) and hit pytest -q—all
tests finish in under three seconds on a laptop.

9

Worked Example – CAPM β via OLS

Listing 2: Minimal module regression.py.
""" CAPM β estimation on a tiny Yahoo Finance fixture ."""
import yfinance as yf
import pandas as pd
import statsmodels .api as sm

def _returns (ticker : str , start: str , end: str) -> pd. Series :
""" Download daily log - returns for <ticker >. """
px = yf. download (ticker , start=start , end=end , progress =False

)["Adj Close"]
return px. pct_change (). dropna () # approx 60 rows -> <1 MB

def fit_capm (asset="AAPL", market ="SPY",
start="2024 -01 -01", end="2024 -03 -31"):

r_asset = alpha + beta * r_market + epsilon // OLS
r_a = _returns (asset , start , end)
r_m = _returns (market , start , end). reindex (r_a.index)
X = sm. add_constant (r_m. values)
model = sm.OLS(r_a.values , X).fit ()
return model

Listing 3: PyTest file tests/test_regression.py.
""" Unit tests for CAPM example ."""
from regression import fit_capm
import numpy as np

def test_beta_positive ():
res = fit_capm ()
beta = res. params [1]
Large -cap tech stocks usually have β > 0
assert beta > 0

def test_rsquared_bounds ():
res = fit_capm ()
assert 0.0 <= res. rsquared <= 1.0 + 1e -12

How to run.
one -time setup
pip install yfinance statsmodels pandas pytest

execute the full suite (including the example above)
pytest -q

How to run the example
The example meets every criterion in Table B: a fixture dataset under 1 MB, a smoke-
test-level run time (< 3 s), and deterministic tests on both the CAPM β and R2.

10

Students can modify the tickers or date range, rerun pytest, and instantly see whether
their changes still pass—mirroring the workflow they’ll use for your main algorithm.

C Authorship Contribution Matrix
The following matrix outlines the specific contributions of each author to various aspects of
the project. A checkmark (✓) indicates primary responsibility, while percentages represent
shared efforts.

Author Conceptualisation Code Experiments Writing Review

Main Author ✓ ✓ 50% ✓ ✓
Collaborator A ✓ 50% ✓
Collaborator B ✓ ✓

Table 4: Individual contributions to the project. Cells marked with ✓ denote primary
responsibility; percentages indicate shared work.

11

	Introduction
	Mathematical Formulation (replace with your own)
	Use‑Case Scenario (replace with your own)
	System Architecture (replace with your own)
	Unified Layered Model (ULM) (replace with your own)
	Algorithm Specification & Pseudocode
	Plain‑Language Overview
	Pseudocode (replace with your own)
	Reference Implementation
	Complexity Analysis
	Executable Example

	Experimental Setup
	Hyper‑Parameter Search Protocol (replace with your own)

	Results & Visualisation
	Formatting Conventions

	Evaluation Metrics
	Regression Metrics

	Discussion
	Reproducibility Checklist
	Conclusion
	Code Appendix
	Unit Tests
	Authorship Contribution Matrix

